

ORCLE ASE Phase II

Bruce Winker Principal Scientist Materials Technology Division Teledyne Scientific Company

hwinker@teledyne.com 805-373-4151

Adaptive Spectral Encoding for Free Space Optical Communications

Project Objectives

- Design and develop a multi-wavelength ASE transmitter and receiver E-O pair for FSOC
- Demonstrate ASE modem performance using 16 wavelength channels @ 2.5 Gb/s
- Use ASE modem in a field test to validate atmospheric obscurant mitigation
- Characterize pulse propagation through clouds
- Advanced multi-wavelength receiver arrays

Technology Needs

- FSOC with atmospheric obscurant mitigation:
 - 2.5 Gb/s data rates
 - · Clouds, fog, smoke, turbulence, aberrations
- Airborne/Ground platforms
- Capability to adapt to changing atmospheric conditions
- Added security at physical layer

Key Innovation: Transmitter Architecture

Technology Approach / Deliverables

Approach

- Evaluate and compare alternate approaches for transmitter modem and receiver modem designs
- Downselect to one approach and develop breadboard transmitter modem and receiver modem

Deliverables

- Detailed characterization of pulse propagation through clouds
- Demonstrate ASE transceiver modem systems
- Demonstrate link through clouds
- Report on system performance

ConOps

Summary of ORCLE ASE Phase I Results

2/13/08/07 Clearly

- Developed and demonstrated 2.5 Gbps, 16-wavelength agile transmitter
 - Large signal noise due to broadband laser source
- Developed 2.5 Gbps, 16-wavelength agile receiver
 - Testing revealed need for renormalization circuitry to improve SNR
- Initial pulse broadening measurements in cumulus clouds at 6,500 ft altitude:
 - Turbulence-induced beam wander and thermal drift in optics near ground were problems
 - Looked for 180° scattering (largest pulse broadening) ⇒ none was observed
 - Large fluctuations in line-of sight attenuation vs time were observed
 - Need to characterize forward scatter angle and position
- Models confirm absence of 180° scattering in cumulus clouds
 - Strong forward scattering is well-documented
- · Conclusion: Approaches for improved laser com links in thin/intermittent clouds:
 - Increase transceiver FOV; use non-line of sight scattering and wavelength encoding (ASE)
 - > Improve link robustness in the presence of clouds
 - Narrowband, wide FOV filter
 - ➡ Improve SNR performance of wide FOV data and acq/track receivers
 - Minimize link re-acquisition time during total fades ⇒ Optimize burst-mode average data rate.
 - No interleaver, tune up clock synch, exploit RF tracking feature of RF/EO transceivers

A SE Trains mitter

Time (Heur)

Amplitude valtime

£ 40

70 70

Summary of Prior Cloud Pulse Broadening Data

2430884 CHild

- Subset of published data relevant to laser com
- Significant differences between prior data and ORCLE ASE plan:
 - Wavelength is much shorter (532 nm vs 1550 nm)
 - Cloud thickness / optical thickness range is too big (τ >>10): LOS attenuation >> 10⁻⁴
 - Data does not allow calculation of radiance function for laser com receiver
 - Receiver designs impractical for laser com

Expmt (Date)	Cloud Thickness (m)	•	Wavelength (nm)	FOV Half Angle (°)	Broadening (ns)	Comment
Mooradian et al (1979)	960	<18 23-26	532	7.5	<20 60-100	
Matter & Bradley (1981)	765	8-20	532	0.5	8-12	Off-axis receiver
Mooradian & Geller (1982)	3000		532	4.25		Large (6 km) laser spot on cloud

Particle size/Wavelength Ratio Considerations

2430887 CH(15)

- Forward scatter component is reduced as the particle size gets smaller
- Water droplet scattering in air at 1.55 microns wavelength
- Cumulus cloud droplet radius is around 6 microns
- A factor of three difference in wavelength is significant

Water and Fog-Oil Cloud Scattering Functions Mie Scattering Theory

2430882 CHAR

Scattering is much more diffuse in fog oil than in water clouds

- Water cloud scatter is much more strongly forward-scattered then fog-oil scatter
- Fog oil backscatter peak (180°) not much smaller than forward scatter peak
 Battlefield Obscurants program measurements will use ORCLE ASE equipment

Transmitter Modem Notional Design

A Teledyne Technologies Company

Laser Com Scenario

2/13/08/07 Elevilla

Typical scenario for 11.3 km air-ground link:

Pulse broadening can be calculated from radiance function

Expected Pulse Broadening from Water-Cloud Scattering

24130882 CHall9

Longest possible scatter paths are shown and compared to the shortest (LOS) distance

- Small-angle scattering approximation valid for water clouds where droplet size>>wavelength.
- Only photons scattered by less than receiver FOV are detected
- Simple geometry gives maximum photon path length as L(1/cos(θ_{FOV}) 1)

ORCLE ASE Phase II Tasks

2430882 Chall IS

1. Cloud Measurements (initial focus of Phase II effort) and Hardware Validation

- Optical scattering experiments:
 - Measure cloud transfer function.
 - Characterize temporal fluctuations in line-of-sight attenuation
- Validation of ASE modem: Use a bit error-rate (BER) tester to characterize ASE benefits

2. Option 2: ASE Hardware Improvements

- Improved light source: Amplitude jitter from the broadband optical source limits system performance;
 an alternative multi-λ source would substantially reduce this problem
 - Build a multiple laser source for bit error rate (BER) testing (meets near-term program needs)
 - Develop specifications for preferred laser source (leverage O-CDMA, OAWG, TACOTA, etc.)
- Implement normalization circuitry for receiver
- Thermal stabilization: Additional thermal stabilization for modem components will improve stability in outdoor experiments (see below).
- Closed-loop beam tracking: Implement tracking loops transceivers to speed up link acquisition and improve link stability. Leverages parallel program efforts at TSC

3. Option 1

Narrowband filter for wide FOV data and acq/track receivers

Cloud Measurements Support Receiver Design

2430882 Cled 11

- Phase 2 Objectives
 - Develop and demonstrate a robust ASE receiver system
 - ASE modem requirements matched to optimum receiver design and scattering phenomena.
 - Identify optimum acq/track receiver configuration
 - Design hybrid data receiver: large FOV/low bandwidth and low FOV/high bandwidth capabilities
- Determine scattering function
 - Intensity vs FOV, angle and position in cloud
 - Correlated to optical thickness (LOS attenuation)
 - As though cloud were thick slab

- Extent of emitting surface
- Angular & spatial distribution of emission
- Pulse broadening inside cloud >> outside cloud

 $\mathbf{T}_{\mathbf{X}}$

Wind

Measurements:

ORCLE Equipment Check-out

2413 GBB / CBall 13

Transmitter site

Receiver A with Aspheric Objective

Transmitter collimator

Receiver site

Receiver E with Fresnel Objective

Receiver equipment

